Panel HMI Siemens Simatic OP177B

Kasowanie programu / przywracanie ustawień fabrycznych / upgrade firmware’u HMI

HMI OP177B z folią

Jeśli masz problem z panelem OP177B i nie wiesz jak wykonać wymienione w tytule operacje, ten artykuł jest właśnie dla Ciebie.
Panele HMI, ba nie tylko one, są zaprojektowane w taki sposób i posiadają tak nieczytelną i zawiłą dokumentację, że w zasadzie jedynie prawdziwy GURU po wielu masakrycznie drogich kursach i wielu set godzinach potrafi połapać się w ich obsłudze, że o programowaniu nie wspomnę.

Przeciętny automatyk w firmie korzystającej z paneli SIEMENSa nie wgłębiając się w powyższe zawiłości ogranicza się w końcu do kilku podstawowych czynności naprawczych:

  • Wgranie nowego oprogramowania
  • Usunięcie istniejącego projektu
  • Przywrócenie panela do stanu fabrycznego
  • Wykonanie upgrade’u systemu

Panele OP177B nie są już produkowane, przynajmniej w wersji, o której tu mowa, jest ich jednak jeszcze wiele w eksploatowanych maszynach, a ze względu na swój leciwy rodowód ich obsługa nie jest taka oczywista.

OP177B podłączony

Przechodzimy do sedna – komunikacja.

Aby wykonać czynności obsługowe wymienione wyżej należy najpierw zestawić komunikację pomiędzy komputerem PC a panelem. Można by pisać wiele na temat tego, wydawałoby się obecnie, prostego zadania, gdyż panel OP177B posiada co najmniej kilka mniej lub bardziej pewnych sposobów komunikowania się z otoczeniem. Na szczęście istnieje coś takiego jak komunikacja serwisowa i jak na razie jest to jedyny wypróbowany sposób, który tutaj użyjemy aby zestawić ze sobą komputer PC i panel Siemensa.
Potrzebować będziemy w tym celu dedykowany do urządzeń Siemensa kabel komunikacyjny PPI z wtykami D-SUB9 po stronie panela i USB po stronie komputera PC. Najlepszy byłby oczywiście oryginalny kabel Siemensowski, ale ja zadowoliłem się chińską podróbką. Po podłączeniu kabla do komputerowego USB może się okazać, że nasz WIN10 (lub podobny system Windows) wykrywa urządzenie jako nieznane (lub w nazwie znajduje się informacja o konieczności skontaktowania się z producentem). Aby opanować sytuację należy oczywiście użyć opcji „Aktualizuj sterownik” i podstawić uprzednio przygotowany pakiet sterownika, ja użyłem ten o nazwie „Prolific PL2303 driver v3.3.2.102 (2008-24-09) Win8_x64_x86”. Po aktualizacji interfejs naszego kabla jest wykrywany poprawnie, tym razem jako „Prolific USB-to-Serial Comm Port (COMx)”, czyli SIEMENS PPI.

Oprogramowanie.

Na naszym pececie należy zainstalować również program do obsługi panela. Ja skorzystałem z „Simatic PRO-SAVE”, który jest częścią pakietu TIA Portal i chyba jako jedyny nadaje się do naszych celów.

W panelu OP wszystkie DIP-Switche dostępne na tylnej ściance ustawiamy na „0=OFF” i włączamy zasilanie panela.

W PC uruchamiamy uprzednio zainstalowany program („WinMenuSTART->Siemens Automation/Simatic PRO-SAVE”) i w jego zakładce „General” ustawiamy następujące parametry:
Device type: OP 177B mono DP
Connection: Serial (via RS232/PPI Multi-Master Cable)
Baud rate: 57600 kb/s
Port: właściwy port dla urządzenia USB (Prolific USB-to-Serial Comm Port)

ProSave General settings

Następnie przechodzimy do zakładki „OS Update” gdzie najpierw podajemy ścieżkę do pliku .img świeżego systemu kasowanego lub upgrade’owanego panela. U mnie przykładowo jest to:
„C:\Program Files\Siemens\Automation\Portal V15\Data\Hmi\Transfer\12.0\Images\Mobile_177\Mobile_177_V12_0_1_0.img”,
lecz pewnie w sieci są jeszcze inne pliki.

UWAGA: Należy pamiętać aby nie zaznaczać pola „RESET”, w zakładce „OS Update”.

3,2,1… START !

Proces przywracania nastaw fabrycznych panela łącznie z usuwaniem istniejącego w pamięci projektu rozpoczyna się po wybraniu przycisku „Update”. Operacja ta, ze względu na niezbyt szybką komunikację może trwać poważne kilkanaście minut.

Jeżeli nadal masz problemy z panelem operatorskim, skorzystaj z naszej oferty ! ZAPRASZAMY !

TESTER INWERTERÓW A

Wersja A

Tester inwerterów wersja A
Uwaga: Tester w najnowszej wersji sprzedażowej może się nieznacznie różnić wyglądem od pokazanego na tym zdjęciu.

KUP TERAZ !
Urządzenie można zakupić na aukcjach firmy AUTOMEL .

Tester Inwerterów w wersji A. jest uniwersalnym narzędziem przydatnym przy sprawdzaniu działania przede wszystkim takich elementów napędów (w tym HVAC) jak: Inwertery (falowniki / sterowniki silników np. kompresorów lub wentylatorów), dotyczy to zarówno sterowników napędów trójfazowych, jak i jednofazowych, prądu przemiennego (AC) oraz zmiennego i stałego (DC).


Konstrukcja urządzenia.
Tester składa się z obudowy, w której umieszczonych jest 6 diod LED wskazujących wynik testu, oraz zakończonych „krokodylkami” 3 przewodów przyłączeniowych służących do podłączania się do sprawdzanego obwodu.

Sprawdzanie obwodów trójfazowych.
Tester przyłączamy zgodnie z opisami umieszczonymi na kablach, tzn. przewód „U” łączymy z wyjściem inwertera oznaczonym jako „U” lub z zaciskiem zasilania trójfazowego AC oznaczonym jako „L1” lub „R”, przewody „V” i „W” również łączymy w analogiczny sposób z odpowiednimi zaciskami tego samego obwodu.

Sprawdzanie obwodów jednofazowych.
W tym przypadku przewód testera oznaczony jako „U” podłączamy do zacisku zasilania AC oznaczonym w badanym urządzeniu jako „L” lub zacisku napięcia stałego DC oznaczonym jako „+” lub „DC+” lub „P+”. Natomiast przewód testera oznaczony jako „V” podłączamy do zacisków oznaczonych jako „N” w obwodach AC lub „-” albo „DC-” albo „N” w obwodach prądu stałego DC.
Zacisk testera oznaczony jako „W” musi zawsze pozostawać niepodłączony.


Uwaga !

Przewód testera oznaczony jako „W” we wszystkich pomiarach jednofazowych nie może być podłączany
do żadnego obwodu. Proszę być pewnym, że nie zwiera on się
z żadną częścią metalową, mogącą przewodzić prąd elektryczny.

Wyniki sprawdzania obwodów Testerem Inwerterów.
Poprawny wynik podczas sprawdzania obwodów testerem pokazano w tabeli poniżej.

Rodzaj testowanego
obwodu
Podłączone
zaciski
Poprawne wskazania
testera
Trójfazowy ACU, V, WWszystkie LED świecą
Jednofazowy ACU, V4 LED świecą (U+,U-,V+,V-)
Jednofazowy DCU, V2 LED świecą * (U+,V- lub U-, V+)
* w zależności od polaryzacji napięcia DC

Aby uzyskać poprawne wyniki pomiaru, w sprawdzanym obwodzie musi występować napięcie większe od 100VDC i nie może ono przekraczać 400VAC (600VDC). Świecenie diod LED podczas testowania obwodów trójfazowych jest równoznaczne z przepływem prądu w danej gałęzi, tak jakby odbiorniki były połączone w „gwiazdę” (patrz rys. poniżej).

Układ połączenia w gwiazdę
Podłączenie testera jest równoznaczne połączeniu odbiorników w „gwiazdę”.

Możliwe jest przyłączanie testera równolegle z silnikiem lub innym odbiornikiem prądu w celu bieżącego monitorowania zasilania tego odbiornika.



Uwaga !

Zachowaj ostrożność – pracujesz z napięciami niebezpiecznymi dla życia. Przed przyłączaniem testera upewnij się, że w testowanym obwodzie nie występuje napięcie (do tego celu służą certyfikowane przyrządy pomiarowe). Na czas pracy zabezpiecz siebie i otoczenie przed działaniem wysokiego napięcia, zwłaszcza kiedy pracujesz na wysokości i/lub na mokrej powierzchni. Używaj środków ochrony osobistej i dbaj o stosowanie zasad BHP, które m.in. dotyczą pracy z niebezpiecznym dla życia napięciem.

Pamiętaj !

Wszystko co robisz, robisz na własną ODPOWIEDZIALNOŚĆ. Twoje decyzje mogą mieć nieodwracalny skutek – zachowaj maksymalną ostrożność !

Przykład testowania obwodów AC i DC jednostki zewnętrznej klimatyzatora.
Poprawny wynik wszystkich testów w obwodach oznaczonych strzałkami sugeruje poprawne działanie sterowania silnikiem sprężarki. Jeśli nadal występują nieprawidłowości w pracy sprężarki, najprawdopodobniej jest ona uszkodzona.
Analogiczny układ jak poniższy, może występować także w przypadku sterowania wentylatorem / wentylatorami.

Aby uzupełnić wiedzę na prezentowany temat zachęcamy do przeczytania artykułu „Diagnoza napędów z falownikami„.

KUP TERAZ !
Urządzenie można zakupić na aukcjach firmy AUTOMEL .

Diagnoza napędów z falownikami

diagnoza napędów z falownikami.

Sprawdziłeś swój falownik, wydaje się sprawny lecz silnik nadal nie rusza ? Co gorsza falownik został sprawdzony w serwisie lub podmieniłeś go na zupełnie taki sam, nie wiesz co robić ? Zanim wyrwiesz już wszystkie włosy z głowy i przyznasz się do porażki, przeczytaj kilka porad i spróbuj wykonać kilka prostych pomiarów, które być może ocalą Cię od niechybnej łysiny a Twój przełożony na pewno nie pominie Cię w następnym przeszeregowaniu.

Napęd servodrive

Poniżej została omówiona diagnoza napędów z falownikami, czyli pomiarów diagnostycznych otoczenia falownika w celu ustalenia błędów w funkcjonowaniu napędu. Artykuł dotyczy napędów z klasycznymi bezkomutatorowymi silnikami 3 fazowymi z uzwojeniem stojana. Należy pamiętać, że znakomita większość uszkodzeń samych falowników jest spowodowana problemami w jego zasilaniu lub obciążeniu. W tym ostatnim przypadku w grę wchodzi wadliwe lub uszkodzone okablowanie lub też silnik.

Zanim jednak przystąpisz do działania, postaraj się przeczytać cały artykuł i odpowiedz sobie na pytanie, czy jesteś w stanie wykonać wszystko co tu opisałem, zachowując przy tym warunki bezpieczeństwa ludzi i sprzętu.

Nie muszę tutaj chyba przypominać, że wszelkie prace na urządzeniach elektrycznych winna przeprowadzać osoba przeszkolona, posiadająca odpowiednie świadectwo kwalifikacyjne, np. uprawnienia SEP.

Artykuł dotyczy większości klasycznych napędów opartych na pojedynczym zestawie: falownik – silnik 3 fazowy, ale równie dobrze może odnosić się do bardziej złożonych i nietypowych implementacji falowników / inwerterów / przemienników częstotliwości a nawet serwoinwerterów / serwowzmacniaczy / serwodriverów przystosowanych do pracy z zasilaniem jedno- lub trójfazowym. Może się jednak zdarzyć, że będziesz miał do czynienia z tak nietypowymi rozwiązaniami układowymi, które wykluczają wykonanie opisanych przeze mnie działań.

otoczenie falownika
Diagnoza napędów z falownikami – Otoczenie falownika

Kiedy należy wykonać omówioną tutaj diagnozę napędów z falownikami ?

W sytuacjach kiedy podejrzenia wadliwej pracy napędu lub falownika padają na okablowanie lub silnik albo aby wyeliminować silnik i kable jako potencjalną przyczynę problemów.
Diagnoza opisana poniżej jest niezbędna zawsze kiedy ustalono wcześniej (np. przy pomocy pomiarów opisanych w artykule pt. „Szybkie sprawdzenie falownika„) uszkodzenie falownika z powodu przeciążenia lub zwarcia na jego wyjściu. W takim przypadku podłączenie nowego falownika lub falownika po naprawie może spowodować ponowne jego uszkodzenie.

Narzędzia i przyrządy

Przed przystąpieniem do prac należy przygotować podstawowe narzędzia elektromonterskie oraz przyrząd pomiarowy. Będziemy korzystać z miernika uniwersalnego przystosowanego do prowadzenia pomiarów napięcia sieci zasilającej o zakresie minimum do 450VAC (600VDC). Warto zwrócić uwagę, czy zarówno narzędzia jak i osprzęt pomiarowy (kable, sondy mierników) posiadają certyfikat bezpieczeństwa do pracy na napięciu co najmniej 1kV.

Oprócz miernika uniwersalnego będziemy potrzebować urządzenia pomiarowego o znacznie bardziej zaawansowanej obsłudze, jakim jest miernik rezystancji izolacji. Dla wiarygodnych pomiarów wystarczy już nawet najprostszy i najtańszy, sprawny technicznie miernik tego typu, np. MIC10 firmy SONEL (https://e-mierniki.pl/p/miernik-rezystancji-izolacji-sonel-mic-10) wraz z dedykowanym wyposażeniem.
Ten miernik potrafi również z powodzeniem zastąpić miernik uniwersalny, o którym mowa wcześniej.
Oczywiście każdy inny miernik rezystancji izolacji również będzie nadawał się do pomiarów pokazanych w dalszej części artykułu.
Przed przystąpieniem do pracy z przyrządami pomiarowymi należy bezwzględnie zapoznać się z fabrycznymi instrukcjami obsługi tych przyrządów i szczegółowo je stosować podczas prowadzenia pomiarów.

Bezpieczeństwo


Przed przystąpieniem do prac zadbaj bezwzględnie o warunki bezpieczeństwa na stanowisku, m.in. zlokalizuj wyłącznik główny zasilania napędu (maszyny), miejsce przechowywania środków gaśniczych oraz zapewnij sobie łączność z odpowiednimi służbami na wypadek np. porażenia prądem (prace pomiarowe prowadzone pod napięciem najlepiej wykonywać w co najmniej 2 osoby, przy czym druga osoba powinna znajdować się poza wygrodzonym polem operacyjnym, w pewnej odległości od prowadzonych prac i pełnić rolę asekuracyjną.

Przygotowanie

Prace diagnostyczne dla ułatwienia podzielimy na następujące części:

  1. Pomiary napięcia zasilania (prace pod niebezpiecznym napięciem sieciowym),
  2. Pomiary napięć sterowania (prace pod napięciem bezpiecznym),
  3. Pomiary okablowania silnika (prace beznapięciowe),
  4. Pomiary silnika
Silnik i inwerter
Diagnoza napędów z falownikami – Diagram

ad.1. Pomiary napięcia zasilania.
Przy pomocy miernika uniwersalnego mierzymy napięcie zasilania falownika (AC) oraz napięcie stałe (DC) pomiędzy zaciskami B- i B+ falownika, jeśli takie są wyprowadzone w danego typu urządzeniach.
Podczas prowadzenia pomiarów falownik powinien być podłączony w swoim standardowym układzie zasilania i znajdować się w trybie STOP, jednocześnie okablowanie silnika oraz silnik powinny być również dołączone tak jak w normalnym toku pracy napędu.

Poniżej przedstawiamy pomiary i ich wyniki przy założeniu, że napęd korzysta ze standardowego zasilania jedno lub trójfazowego. Prawidłowe napięcie zasilania, do którego przystosowany jest mierzony falownik należy każdorazowo sprawdzić na jego tabliczce znamionowej lub też w odnośnej dokumentacji technicznej.

A. Dla falowników z zasilaniem jednofazowym wykonujemy następujące pomiary:

Zaciski falownikaZakresOczekiwane napięcie
L1 / N>=250VAC230VAC
B- / B+600VDC325VDC

B. Dla falowników z zasilaniem trójfazowym pomiary wyglądają następująco:

Zaciski falownikaZakresOczekiwane napięcie
L1 / L2>=600VAC400VAC
L1 / L3>=600VAC400VAC
L2 / L3>=600VAC400VAC
B- / B+1000VDC565VDC

C. Dla niektórych falowników (zwłaszcza serwoinwerterów) niezbędne jest wykonanie dodatkowego pomiaru napięcia zasilania układów sterowania falownika zasilaniem jednofazowym. W takim przypadku wykonujemy pomiary:

Zaciski falownikaZakresOczekiwane napięcie
L1 / N>=250VAC230VAC

Znaczące różnice otrzymanych pomiarów świadczą o nieprawidłowym zasilaniu falownika lub o jego uszkodzeniu, co prawie na pewno jest skutkiem nieprawidłowego działania napędu. Częstą przyczyną braku prawidłowego zasilania lub w układach zasilania trójfazowego braku symetrii faz, jest okablowanie albo też włączone w obwód łączniki takie jak: wyłączniki mechaniczne, styczniki zabezpieczające (odłączające zasilanie falownika w wypadku niepoprawnej pracy maszyny). Elementy te należy zbadać lub w przypadku wątpliwości, wymienić na nowe.

separacja kabla
Diagnoza napędów z falownikami – Separacja elektryczna kabla do pomiarów.

ad.3. Pomiary okablowania silnika.

Ponieważ prace te będą wykonywane w stanie beznapięciowym (aczkolwiek podczas pomiaru mogą występować krótkotrwale wysokie napięcia, których skutkiem działania może być uszkodzenie falownika, postępuj następująco:

Odłącz zasilanie falownika wyłącznikiem sieciowym (głównym) maszyny oraz upewnij się, używając posiadanego miernika lub specjalnego testera, czy na przyłączach falownika nie występuje potencjał elektryczny.

Odczekaj koniecznie czas potrzebny na rozładowanie się kondensatorów wysokonapięciowych !
Czas ten jest zwykle określony przez producenta i oznaczony na obudowie falownika lub zamieszczony w jego dokumentacji. Niektóre urządzenia posiadają też odpowiednio oznaczoną, zazwyczaj czerwoną, kontrolkę informującą o obecności napięcia na kondensatorach falownika.

Jeśli nie wiesz ile czasu powinieneś odczekać przed przystąpieniem do dalszych prac, załóż bezpieczny czas np. 30 minut. Dla falowników dużej mocy, czas powinien być odpowiednio dłuższy.
Możesz również zmierzyć napięcie pomiędzy zaciskami falownika oznaczanymi zwykle P+ i P- (jeśli Twój falownik takie posiada), jest to napięcie występujące na baterii kondensatorów wysokonapięciowych. Jeśli napięcie to jest większe niż kilka voltów, odczekaj do momentu jego bezpiecznego samoczynnego obniżenia (rozładowania się kondensatorów).
Uwaga: Całkowity brak mierzonego napięcia może być również efektem niesprawności falownika, w takim przypadku zaleca się specjalną ostrożność.


Pamiętaj: Prace pomiarowe silnika i jego okablowania możesz prowadzić jedynie przy stanie beznapięciowym na wszystkich zaciskach falownika oraz gdy kable są odłączone od falownika !


Teraz w falowniku odłącz przewody elektryczne od strony zacisków kabla silnika (zazwyczaj są one oznaczane jako „U”, „V”, „W” ale spotykane są inne oznaczenia np. „MOTOR”) aby „uwolnić elektrycznie” kabel silnika od falownika.
Nie zapomnij również o odłączeniu ekranowania (oplotu) kabla oraz przewodu PE od zacisków falownika.
Pozostałe przewody, w tym przewody zasilające falownik, przewody PE uziemiające falownik od strony zasilania oraz przewody podłączone do zacisków niskonapięciowych sterowania, mogą pozostać podłączone.

Następnie otwórz puszkę osłony kabla znajdująca się zazwyczaj na korpusie silnika i odłącz wszystkie przewody kabla silnika (U, V, W, PE) a sam kabel wysuń z dławika tak, aby odizolować również ekran (oplot) kabla od części metalowych obudowy silnika. Odłączone końcówki przewodu oraz jego oplot powinny być zaizolowane na czas pomiaru i powinny się znajdować maksymalnie daleko od siebie i od innych części metalowych (np. korpusu silnika).
W niektórych napędach silniki posiadają specjalne hermetyczne przyłącze w postaci gniazda (wtyk znajduje się na kablu silnika), w takim przypadku wystarczy rozłączyć trwale to przyłącze.

Jeśli napęd posiada enkoder lub resolver, zwłaszcza gdy jego okablowanie przebiega razem z kablem zasilania silnika, należy postępować identycznie, jak w przypadku kabla silnika, tzn. odłączyć obustronnie przewody (kabel) enkodera wraz z oplotem. Podczas wykonywania pomiarów, w kablach m.in enkodera mogą się wyindukować prądy szkodliwe dla obwodów falownika.


Sprawdź czy na pewno dobrze wykonałeś powyższe zadania, w przeciwnym wypadku wyniki pomiarów mogą być błędne a Twój falownik i/lub sam przyrząd pomiarowy będą narażone na poważne uszkodzenia.


Pamiętaj: Podczas wykonywania pomiarów rezystancji izolacji na poszczególnych zaciskach pomiarowych oraz na wolnych końcówkach kabla i samym kablu może pojawić się chwilowo wysokie napięcie. Zachowaj Ostrożność !

Pomiary Izolacji. Do odizolowanych przewodów kabla silnika po stronie falownika podłączamy teraz sondy pomiarowe miernika izolacji i wykonujemy następujące pomiary:

Przewody Kabla SilnikaOczekiwane pomiary rezystancji izolacji
U / V *>20MΩ
U / W *>20MΩ
V / W *>20MΩ
* – biegunowość podłączeń sond pomiarowych nie ma znaczenia chyba, że jest to opisane w dokumentacji posiadanego przyrządu pomiarowego

Następnie podłączamy sondy pomiarowe miernika izolacji pomiędzy oplot (ekran) kabla (w drugim pomiarze jest to przewód PE) a zwarte ze sobą przewody zasilania silnika w taki sposób by dodatnia elektroda pomiarowa była przyłączona do ekranu lub końcówki przewodu PE kabla. Pomiary wykonujemy wg. poniższej tabeli:

Przewody Kabla SilnikaOczekiwane pomiary rezystancji izolacji
(+)E / (-) U+V+W *>20MΩ
(+)PE / (-) U+V+W *>20MΩ
* – przewody zasilające są zwarte ze sobą, a ekran kabla „E” lub przewód PE podłączone są do dodatniej sondy pomiarowej (właściwą biegunowość należy sprawdzić w dokumentacji posiadanego przyrządu pomiarowego)

Dla pewności powyższe pomiary możemy wykonać kilkakrotnie, w tym również od strony kabla podłączanej do zacisków silnika.

Znaczące różnice każdego z otrzymanych pomiarów od wartości oczekiwanych, świadczą o uszkodzonym kablu silnika, który to kabel bezwzględnie należy wymienić w całości na nowy.


Uwaga: Jeśli producent urządzenia pomiarowego nakazuje inną konfigurację pomiarową dla kabli elektrycznych, należy bezwzględnie stosować zalecenia zawarte w fabrycznej instrukcji obsługi stosowanego miernika izolacji.

silnik trójfazowy
Diagnoza napędów z falownikami – Silnik

ad.4. Pomiary silnika.

Pomiary te dzielimy na:
A. sprawdzenie rezystancji uzwojeń silnika,
B. pomiar izolacji uzwojeń,
C. pomiar izolacji silnika


Pamiętaj: Wszystkie pomiary silnika wykonywane są w stanie beznapięciowym. Podczas wykonywania tych pomiarów bezwzględnie kabel zasilania silnika musi być od niego odłączony, w przeciwnym wypadku może dojść do niebezpieczeństwa porażenia lub uszkodzeń napędu !

ad.4.A Pomiar rezystancji uzwojeń silnika.

Pomiar rezystancji uzwojeń silnika wykonujemy zazwyczaj przyrządem pomiarowym ustawionym na zakres pomiaru rezystancji poniżej . Najlepsze do tego celu są dedykowane przyrządy pomiarowe posiadające tzw. mostki do pomiaru rezystancji, które posiadają możliwość pomiaru 4ro przewodowego. W ostateczności jednak możemy posłużyć się miernikiem uniwersalnym oferującym jedynie 2 przewodowy pomiar rezystancji i najmniejszy zakres 10Ω, należy jednak wziąć pod uwagę uchyb jakim obarczony będzie wykonany w ten sposób pomiar.

Pomiary Rezystancji. Do odpowiednich zacisków silnika podłączamy sondy pomiarowe i wykonujemy następujące pomiary:

Zaciski SilnikaOczekiwane pomiary rezystancji uzwojeń silnika
U / V *<<1Ω**
U / W *<<1Ω**
V / W *<<1Ω**
* – podłączenia sond pomiarowych należy dokonać w sposób opisany w dokumentacji posiadanego przyrządu pomiarowego
** – zmierzona rezystancja przy silniku z uzwojeniami połączonymi w gwiazdę powinna być równa dwukrotnej rezystancji uzwojenia podanej w ma tabliczce znamionowej lub w dokumentacji ruchowej silnika. W przypadku kiedy uzwojenia są połączone w trójkąt, zmierzona rezystancja jest równa Rz=2/3 * R = 0,67 R, gdzie R jest rezystancją pojedynczego uzwojenia.

Znaczące różnice otrzymanych pomiarów zarówno między sobą, jak i od wartości oczekiwanych świadczą o uszkodzonym uzwojeniu silnika. W takim wypadku silnik należy oddać do specjalistycznego serwisu lub wymienić na nowy, sprawdzony.

ad.4.B Pomiar izolacji uzwojeń silnika.

Aby wykonać pomiar rezystancji izolacji uzwojeń silnika trójfazowego należy w puszce łączeniowej na silniku wyizolować 6 zacisków trzech uzwojeń silnika (U1, U2, V1, V2, W1, W3). Można to wykonać zdejmując łączówki ustalające układ połączeń silnika (gwiazda / trójkąt), odkręcając uprzednio nakrętki je mocujące. W przypadku, gdy silnik nie jest wyposażony w opisane wcześniej łączówki (połączenia uzwojeń dokonano na stałe), pomiarów nie da się wykonać i należy przejść do następnego punktu 4.C.
Pomiaru rezystancji izolacji uzwojeń dokonujemy odpowiednim przyrządem w sposób opisany w tabeli poniżej, tzn. do jednego z zacisków przyrządu podłączamy zwarte ze sobą obydwie końcówki (U1 i U2) uzwojenia U, do drugiego zacisku zwarte ze sobą końcówki (V1 i V2) uzwojenia V itd.:

Zaciski Uzwojeń SilnikaOczekiwane pomiary rezystancji izolacji
U1+U2 / V1+V2 *>20MΩ
U1+U2 / W1+W2 *>20MΩ
V1+V2 / W1+W2 *>20MΩ
* – biegunowość podłączeń sond pomiarowych nie ma znaczenia chyba, że jest to inaczej opisane w dokumentacji posiadanego przyrządu pomiarowego

Znaczące różnice otrzymanych pomiarów zarówno między sobą, jak i od wartości oczekiwanych świadczą o uszkodzonej izolacji uzwojeń silnika. W takim wypadku silnik należy oddać do specjalistycznego serwisu lub wymienić na nowy, sprawdzony.

ad.4.C Pomiar izolacji silnika.

Pomiaru rezystancji izolacji uzwojeń dokonujemy odpowiednim przyrządem w sposób opisany w tabeli poniżej, tzn. do jednego z zacisków przyrządu podłączamy zwarte ze sobą wszystkie zaciski silnika (U, V i W), drugi zacisk przyrządu podłączamy w miejscu odizolowanym do obudowy (korpusu) silnika, jak to jest opisane niżej:

Zaciski SilnikaOczekiwane pomiary rezystancji izolacji
(+) Korpus Silnika / (-) U+V+W *>20MΩ
* – Właściwą biegunowość sond pomiarowych należy sprawdzić w dokumentacji posiadanego przyrządu pomiarowego

Znaczące różnice otrzymanych pomiarów od wartości oczekiwanych świadczą o uszkodzonej izolacji stojana lub uzwojeń silnika. W takim wypadku silnik należy oddać do specjalistycznego serwisu lub wymienić na nowy, sprawdzony.


Dla pełnej diagnozy napędu należy wykonać również sprawdzenie falownika, w tym celu zapraszamy do przeczytania naszego artykułu „Szybkie sprawdzenie falownika„.


Pamiętaj: Nie próbuj wykonywać samodzielnie napraw, jeśli nie jesteś pewien tego co robisz. W celu zaoszczędzenia czasu i obniżenia mogących powstać w ten sposób dodatkowych kosztów, skorzystaj z wiedzy i doświadczenia wykwalifikowanego serwisu naprawczego.


ZAPRASZAMY

Firma Elektronika Serwis ani autor tego artykułu nie ponoszą w żadnym wypadku jakiejkolwiek odpowiedzialności za powstałe w wyniku działań inspirowanych niniejszym artykułem straty materialne i/lub uszczerbek na zdrowiu.