Szybkie sprawdzenie falownika

Twój falownik pokazuje błąd, wybija zabezpieczenia, nie rusza silnika ? Masz ochotę odesłać go do serwisu ? Zanim to zrobisz, warto wykonać kilka pomiarów aby uzyskać wstępną diagnozę.

falownik Goodrive
falownik Goodrive

Poniżej przedstawię bardzo prostą i szybką metodę pomiarów diagnostycznych falownika w celu ustalenia jego niedomagań. Zanim jednak przystąpisz do pracy, przeczytaj cały artykuł i zastanów się, czy jesteś w stanie wykonać wszystko co tu opisałem, zachowując przy tym warunki bezpieczeństwa ludzi i sprzętu.

Artykuł dotyczy większości falowników / inwerterów / przemienników częstotliwości / serwoinwerterów / serwowzmacniaczy / serwodriwerów o konstrukcji zawierającej układ zasilania jedno- lub trójfazowy oraz układ wyjściowy mocy oparty na tranzystorach lub modułach IGBT w standardowej konfiguracji. Może się jednak zdarzyć, że będziesz miał do czynienia z nietypowymi rozwiązaniami układowymi wykluczającymi wykonanie opisanych przeze mnie pomiarów.

Narzędzia

Przed przystąpieniem do prac przygotuj podstawowe narzędzia, jak na przykład wkrętak (rozmiarem przystosowany do śrub na zaciskach mierzonego falownika). Najważniejszym jednak jest przyrząd pomiarowy. Do naszych celów wystarczy zwykły cyfrowy lub analogowy miernik uniwersalny z opcją pomiaru złącz półprzewodnikowych (zwykle jest to zakres pomiarowy oznaczony symbolem diody). Miernik powinien być wyposażony w sondy pomiarowe i co ważne, w źródło zasilania (baterię) o dobrej kondycji.

Przygotowania


Przed przystąpieniem do prac odłącz zasilanie falownika wyłącznikiem sieciowym (głównym) maszyny oraz upewnij się, używając posiadanego miernika lub specjalnego testera, czy na przyłączach falownika nie występuje prąd elektryczny.


Odczekaj koniecznie czas potrzebny na rozładowanie się kondensatorów wysokonapięciowych ! Czas ten jest zwykle określony przez producenta i oznaczony na obudowie falownika lub zamieszczony w jego dokumentacji. Niektóre urządzenia posiadają też odpowiednio oznaczoną, zazwyczaj czerwoną, kontrolkę informującą o obecności napięcia na kondensatorach falownika.

Jeśli nie wiesz ile czasu powinieneś odczekać przed przystąpieniem do dalszych prac, załóż bezpieczny czas np. 30 minut. Dla falowników dużej mocy, czas powinien być odpowiednio dłuższy.
Możesz również zmierzyć napięcie pomiędzy zaciskami falownika oznaczanymi zwykle P+ i P- (jeśli Twój falownik takie posiada), jest to napięcie występujące na baterii kondensatorów wysokonapięciowych. Jeśli napięcie to jest większe niż kilka voltów, odczekaj do momentu jego bezpiecznego samoczynnego obniżenia (rozładowania się kondensatorów).
Uwaga: Całkowity brak mierzonego napięcia może być również efektem niesprawności falownika, w takim przypadku zaleca się specjalną ostrożność.


Pamiętaj: Dalsze prace możesz prowadzić jedynie przy stanie beznapięciowym na wszystkich zaciskach falownika !


Teraz odłącz wszystkie przewody elektryczne od strony zasilania oraz od strony przyłączy silnika (również te podłączone do rezystora hamującego, jeśli został zaimplementowany). Przewody PE oraz te, podłączone do zacisków niskonapięciowych sterowania mogą pozostać podłączone.
Sprawdź czy na pewno dobrze wykonałeś powyższe zadanie, w przeciwnym wypadku wyniki pomiarów mogą być błędne a Twój przyrząd pomiarowy będzie narażony na uszkodzenie.

Dla pewności braku napięcia na obwodach mocy falownika i ochrony Twojego przyrządu pomiarowego, na zaciski P+ i P- falownika możesz założyć tymczasowo zworkę z odcinka przewodu lub rezystora rozładowczego o rezystancji kilka kiloomów i mocy kilku watów.
Zworkę tę należy usunąć bezpośrednio przed wykonywaniem pomiarów.

Konstrukcja falownika

W naszych pomiarach traktujemy falownik jako „czarną skrzynkę”, jednak dobrze jest zapoznać się z jego ogólną konstrukcją, aby lepiej zinterpretować otrzymane wyniki.

Schemat blokowy falownika
Schemat blokowy falownika (wariant uproszczony)

W znakomitej większości falowników, zwłaszcza małych i średnich mocy, możemy wyróżnić 2 główne bloki, które opiszemy w dalszej treści:

  1. Blok wejściowy – zasilania
  2. Blok wyjściowy – mocy

ad.1. BLOK ZASILANIA

Blok zasilania składa się zazwyczaj z filtra przeciwzakłóceniowego (czasami filtr taki stanowi oddzielony mechanicznie i elektrycznie moduł, zamontowany często pod radiatorem falownika lub obok niego), oraz obwodu prostownika 1 lub 3 fazowego i baterii kondensatorów.
Prostownik w falownikach małej i średniej mocy zrealizowany jest (szczególnie w tańszych i prostszych modelach) w oparciu o standardowy diodowy, pasywny mostek Graetz’a, czasami zaś jest to mostek sterowany (prostownik aktywny) zrealizowany w oparciu o diody sterowane (tyrystory).
Niezależnie od przyjętego rozwiązania, zadaniem prostownika jest zamiana przemiennego napięcia sieci dostarczonego do falownika, na napięcie stałe służące do zasilenia jego obwodów mocy.

Powstałe za prostownikiem tętnienia prądu są wygładzane za pomocą baterii kondensatorów, która to składa się z jednego lub wielu wysokonapięciowych kondensatorów elektrolitycznych. Pełni ona również bardzo ważną rolę w magazynowaniu i oddawaniu energii w trakcie normalnej pracy falownika.

W przypadku zasilania falownika z jednofazowego napięcia sieci elektroenergetycznej 230VAC, na zaciskach baterii kondensatorów filtrujących pojawia się napięcie ok. 325VDC. W przypadku zaś, kiedy urządzenie zasilane jest trójfazowo z sieci o napięciu międzyfazowym 400VAC, napięcie na kondensatorach wynosi ok. 565VDC.
W praktyce, ze względu na wahania napięcia sieci, jej brak symetrii oraz jakość samych kondensatorów, powyższe napięcia mogą się różnić od wyżej podanych.
Czasami falownik przystosowany jest do zasilania innymi napięciami, lecz nie ma to większego znaczenia dla naszych pomiarów.

Napięcie na baterii kondensatorów jest wyprowadzane zazwyczaj na zaciski falownika oznaczane zwykle jako P+ i P-. Niestety nie wszystkie falowniki mają je dostępne, zwłaszcza urządzenia małej mocy posiadają wyprowadzony jedynie zacisk P+. W takim przypadku nie wykonamy pełnych pomiarów chyba, że zapewnimy sobie dostęp do brakującego zacisku wewnątrz urządzenia.

W skład układu zasilania wchodzi także rezystor startowy. Szerzej o tym rezystorze można przeczytać tutaj.

Rezystor startowy jest umieszczany zwykle szeregowo pomiędzy wyjściem prostownika a baterią kondensatorów filtrujących. Ma on za zadanie ograniczenie prądu ładowania kondensatorów w fazie po włączeniu zasilania. Dzieje się tak, gdyż jego rezystancja wraz z pojemnością kondensatorów tworzą pewną stałą czasową opóźniającą ich ładowanie zmniejszonym prądem.
Procesor falownika sterujący fazą rozruchu urządzenia, po określonym czasie, zwiera (zazwyczaj za pomocą stycznika) zaciski rezystora startowego eliminując tym samym jego wpływ na obwód zasilania falownika w dalszej fazie pracy.
Należy pamiętać, że w konstrukcjach opartych o aktywne zespoły prostownicze (mostki tyrystorowe) rezystor startowy nie jest zwykle stosowany, gdyż sterownik prostownika odpowiednio reguluje prąd ładowania baterii kondensatorów.

Uwaga
W trakcie wykonywania naszych pomiarów, warto uwzględnić obecność rezystora startowego, który podczas pomiarów obwodów zasilania stanowi rezystancję szeregową.

ad.2. BLOK WYJŚCIOWY

Blok wyjściowy falowników jest zwykle zrealizowany w oparciu o moduł lub moduły zwierające tranzystory IGBT. W mniejszych falownikach spotkać można pojedyncze tranzystory IGBT, lecz jest to już coraz rzadszy przypadek. Niezależnie od konstrukcji, z punktu widzenia jego działania, blok wyjściowy ma za zadanie zamienić prąd stały dostarczony z bloku zasilania a konkretnie z jego baterii kondensatorów, na przebieg zmienny (przemienny trójfazowy).
Istnieją również falowniki posiadające wyjścia jednofazowe, jednak nimi nie będziemy się tutaj zajmować, gdyż stanowią mniejszość i obejmują jedynie falowniki małych mocy. Ich pomiar jest identyczny, jak dla falowników o wyjściach trójfazowych z wyłączeniem zacisku brakującej fazy.
Należy również dodać, że niektóre konstrukcje wyposażone są od strony zacisków wyjściowych we wbudowane obciążenia o niewielkiej rezystancji, w takich konstrukcjach wykonanie poprawnych pomiarów jest bardzo utrudnione i wymaga użycia zaawansowanych przyrządów pomiarowych (np. mostka do pomiaru małych rezystancji).

Goodrive
Goodrive

Pomiary

Przed przystąpieniem do pomiarów i po upewnieniu się o braku napięcia na zaciskach falownika, zapewnij sobie swobodny dostęp do punktów pomiarowych, które stanowią zespoły zacisków:

  • Zasilania (przyłącze sieci) – R, S, T (opisywane również jako L1, L2, L3) lub L1, L2 (albo N) w falownikach z zasilaniem jednofazowym
  • Wyjściowe (przyłącze silnika) – U, V, W (opisywane również jako M1, M2, M3 albo T1, T2, T3)
  • Napięcia stałego (na baterii kondensatorów) oznaczane zwykle jako
    P+, P- (opisy ich jednak mogą być różnorakie, należy sprawdzić to w dokumentacji fabrycznej urządzenia)
Zaciski falownika (przykład)

Uwaga
Pomiary należy wykonywać przyrządem ustawionym na zakres pomiaru elementów półprzewodnikowych (zazwyczaj zakres ten jest oznaczony symbolem diody).

Poniżej zamieszczam tabelkę, która obrazuje poszczególne pomiary wraz z ich prawidłowym wynikiem. Niektóre wyniki liczbowe (wartości spadków napięć na złączach półprzewodnikowych) mogą się różnić od wartości przedstawionych w tabeli.

Tabela pomiarów falowników

Tabela do pobrania w formie pliku pdf jest dostępna Tutaj.

Uwaga
Pamiętaj, że wykonane pomiary, o których mówi niniejszy artykuł, mają jedynie charakter orientacyjny i mogą być tylko jednym z wielu czynników pozwalających postawić trafną diagnozę uszkodzeń falownika.

Przykład 1. Jeśli podczas jednego z pomiarów bloku zasilania wykryjesz całkowite zwarcie a dodatkowo falownik przyłączony do zasilania uszkadza, „wybija” zabezpieczenia, możesz być prawie pewny, że falownik ten jest definitywnie uszkodzony.

Przykład 2. Jeśli podczas pomiaru bloku wyjściowego jeden z pomiarów wykazuje odchylenie od podanej wartości a pomiary odłączonego silnika nie wykazują anomalii, nie możesz zdiagnozować w 100% uszkodzenia falownika.


Nie próbuj wykonywać samodzielnie napraw, jeśli nie jesteś pewien tego co robisz. W celu zaoszczędzenia czasu i obniżenia mogących powstać w ten sposób dodatkowych kosztów, skorzystaj z wiedzy i doświadczenia wykwalifikowanego serwisu naprawczego.


ZAPRASZAMY

Firma Elektronika Serwis ani autor tego artykułu nie ponoszą w żadnym wypadku jakiejkolwiek odpowiedzialności za powstałe w wyniku działań inspirowanych niniejszym artykułem straty materialne i/lub uszczerbek na zdrowiu.

RS-Comm

Oprogramowanie narzędziowe dla falowników firmy Sanyu

Aktualizacje oprogramowania RS-Comm (upgrade)

Obecnie dostępne są wersje:

 

Instrukcja instalacji.

Pobierz odpowiedni plik archiwum, rozpakuj* go w dowolnym folderze na dysku twardym swojego komputera i uruchom z prawami administratora plik instalatora „setup.exe”.

 

*) Niektóre archiwa mogą być zabezpieczone hasłem. Możliwość uzyskania hasła pod adresem admin@elserw.com

Uruchamianie napędu z falownikiem

… czyli praktyczna wiedza na temat podłączania falownika.*

Co należy zrobić i o czym pamiętać zanim podłączysz falownik ?

Przed podłączeniem falownika należy:

  • Sprawdzić czy dane techniczne falownika są zgodne z danymi na tabliczce znamionowej silnika oraz czy zasilanie falownika jest odpowiednie do tego, które zostanie do niego przyłączone w maszynie. Napięcie zasilania zawsze sprawdzamy zanim przyłączymy falownik do układu.
  • Na pewno warto sprawdzić sposób i rodzaj sterowania, ze szczególnym uwzględnieniem zadawania częstotliwości (prędkości). Pomocne tu będą: dokumentacja maszyny (schematy elektryczne) i dokumentacja dostarczona przez producenta / importera montowanego falownika.
  • Sprawdzić czy falownik jest odpowiednio zaprogramowany a jeśli nie, należy zrobić to zgodnie z jego instrukcją programowania.
Obrazek posiada pusty atrybut alt; plik o nazwie Depositphotos_13332104_original.jpg
  • Koniecznie sprawdź, czy silnik jest właściwie skonfigurowany (falowniki o zasilaniu jednofazowym – silniki zwykle konfigurowane są „w trójkąt” a o zasilaniu 3-fazowym „w gwiazdę”).

  • Sprawdzić symetryczność uzwojeń silnika (zwłaszcza jeśli nie podłączamy fabrycznie nowego silnika) – za pomocą omomierza, wykonując na najniższym zakresie pomiarowym 3 pomiary rezystancji uzwojeń silnika od strony zacisków falownika (falownik odłączony oczywiście od układu elektrycznego). Mierzymy rezystancję pomiędzy zaciskami U-V, U-W, V-W, wyniki pomiarów muszą być identyczne, w przeciwnym wypadku sprawdzamy silnik oraz okablowanie.
  • Przy pomocy miernika izolacji (induktora) należy sprawdzić czy nie ma doziemienia na żadnej z 3 faz od strony zacisków falownika (podczas pomiarów falownik musi być koniecznie odłączony od układu !).
  • Sprawdzić „ręcznie” (z zachowaniem szczególnej ostrożności !), czy wirnik silnika swobodnie się obraca. Jeśli nie, lub jeśli sprawdzenie takie nie jest możliwe, silnik należy odłączyć mechanicznie od maszyny (np. zdjąć pasek klinowy) i lub wybudować go na zewnątrz.
  • W razie jakichkolwiek wątpliwości dotyczących silnika, należy oddać go do sprawdzenia i ew. naprawy w specjalistycznej firmie. Próba współpracy falownika z wadliwym silnikiem w większości przypadków kończy się poważnymi konsekwencjami (najczęściej ucierpi na tym falownik).
  • Przed przyłączeniem falownika można wykonać rzeczywisty test silnika podłączając go bezpośrednio do sieci zasilającej 3-fazowej. Dotyczy to większości silników 3-fazowych, lecz nie wszystkich.
    (Uwaga: w takim przypadku silnik musi być skonfigurowany zgodnie z jego tabliczką znamionową, zwykle „w gwiazdę”, a jego wirnik musi mieć możliwość swobodnego obrotu – najlepiej odłączyć w tym celu układ mechaniczny).

Przed podaniem napięcia zasilania na falownik (po jego podłączeniu i montażu w maszynie) należy:

  • Sprawdzić poprawność mechanicznego montażu falownika w maszynie lub rozdzielnicy / szafie sterowniczej. Zwrócić uwagę na minimalne odstępy obudowy falownika od innych urządzeń w szafie (odstępy te oraz inne warunki montażu mechanicznego falownika są opisane w dokumentacji producenta urządzenia i powinny być rygorystycznie przestrzegane, gdyż nie stosowanie się do nich skraca bezawaryjny czas pracy lub w ogóle uniemożliwia falownikowi poprawną pracę).
Obrazek posiada pusty atrybut alt; plik o nazwie Depositphotos_9382384_original.jpg
  • Sprawdzić poprawność elektrycznego podłączenia falownika, ze szczególnym uwzględnieniem przekrojów i poprawności podłączenia uziemień zarówno od strony zasilania falownika, jak i od strony jego obciążenia (silnika).

  • Sprawdzić poprawność logiczną i elektryczną podłączenia sygnałów sterujących do zacisków sterowania falownika.
  • Sprawdzić czy wszystkie parametry zaprogramowanego falownika są poprawne i zgodne z warunkami jego pracy (parametry dot. silnika, sterowania, sposobu normalnej pracy oraz trybów awaryjnych, itd.). Odpowiednie informacje znajdują się zawsze w dokumentacji fabrycznej falownika.
  • UWAGA: W układzie elektrycznym, pomiędzy zaciskami wyjściowymi falownika a silnikiem nie może być żadnej aparatury rozłączającej, jak styczniki, wyłączniki nadprądowe, itp. (chyba, że producent falownika je dopuszcza, ale sytuacja taka ma miejsce niezwykle rzadko i jest szczegółowo opisana w dokumentacji falownika).

Podczas pracy falownika, tj. gdy falownik jest w trybie „RUN” („Trip”) :

  • ZABRANIA SIĘ kategorycznie odłączania obciążenia falownika (silnika), ani też przyłączania go (nawet jeśli falownik pracuje testowo i bez obciążenia).

  • Należy zadbać o bezprzerwowe zasilanie falownika do momentu zatrzymania silnika i przejścia falownika w stan „STOP”. Trzeba pamiętać, że sterowanie zasilaniem falownika musi być odpowiednio skorelowane ze sterowaniem ruchem silnika, tak aby stycznik zasilania (jeśli jest) nie powodował rozłączania zasilania przed zgłoszeniem zatrzymania się falownika (informację o zatrzymaniu można np. pobrać z jednego z wyjść cyfrowych falownika pod warunkiem jednakże, że falownik ten posiada taką możliwość i jest odpowiednio zaprogramowany).
  • NIE NALEŻY wyłączać zasilania maszyny, a tym samym falownika, kiedy falownik nie jest w trybie „STOP” a silnik nie jest całkowicie zatrzymany. Skraca to wydatnie żywotność falownika, a w pewnych sytuacjach może dojść do niebezpiecznych stanów awaryjnych napędu, z uszkodzeniem urządzeń włącznie.
Obrazek posiada pusty atrybut alt; plik o nazwie Depositphotos_13332104_original.jpg
  • Należy pamiętać, że po wyłączeniu napięcia zasilania falownika, ponowne jego włączenie jest możliwe po co najmniej 60 sekundach (o ile dokumentacja tego urządzenia nie nakazuje inaczej). Należy rygorystycznie przestrzegać minimum 60 sekundowego cyklu włączania i wyłączania zasilania falownika.

  • Dozwolona jest dowolna zmiana częstotliwości (prędkości) falownika, jednakże należy pamiętać, że zbyt szybka zmiana nastaw (głównie w przypadku zadawania częstotliwości „ręcznie”, np. za pomocą potencjometru) może doprowadzić do przeciążenia układu napędowego i wystąpienia błędu lub uszkodzenia falownika.
  • Przy pierwszym uruchomieniu napędu należy zadbać, aby ustawiona częstotliwość wyjściowa falownika była taka sama, jak nominalna częstotliwość pracy silnika (zwykle jest to 50Hz). W szczególnych jednak przypadkach dopuszcza się odstąpienie od tej zasady, jednak zawsze należy mieć na uwadze wystąpienie przeciążenia falownika podczas rozbiegu i związane z tym możliwe konsekwencje dla napędu i samego falownika.
  • Podczas uruchamiania napędu należy zwrócić uwagę na to, czy silnik rozpędza się i pracuje równomiernie, bez zacięć i ze stabilną prędkością (równomiernym przyśpieszaniem). W razie jakichkolwiek anomalii należy przerwać uruchomienie i wznowić je następnie po odłączeniu wirnika silnika od układu mechanicznego, jeśli ten jest prawdopodobną przyczyną zauważonych nieprawidłowości.
Obrazek posiada pusty atrybut alt; plik o nazwie Depositphotos_13332104_original.jpg
  • W przypadku wystąpienia błędu sygnalizowanego stanem alarmowym falownika i zatrzymaniem napędu, przed skasowaniem błędu i ponownym rozruchem napędu, należy odczekać określony czas wskazany w dokumentacji fabrycznej falownika (zwykle jest to nie mniej niż 60 sekund).

  • Należy pamiętać, że desymetryzacja faz lub skokowa zmiana rezystancji obciążenia elektrycznego falownika (np. odłączenie silnika), w większości przypadków skutkuje USZKODZENIEM falownika.
Obrazek posiada pusty atrybut alt; plik o nazwie Depositphotos_9382384_original.jpg
  • Uruchomienie napędu należy przeprowadzać zawsze przy spełnieniu warunków bezpieczeństwa wynikających ze stosowania odpowiednich instrukcji w tym zakresie. Szczegółowe warunki uruchamiania napędów z falownikami są opisane w dokumentacjach falowników i maszyn przemysłowych, w których pracują.

Jeśli po przeczytaniu powyższego artykułu nie rozumiesz zawartych tutaj informacji lub z różnych przyczyn, nie jesteś w stanie zastosować się do powyższych porad, instalację falownika zleć wykwalifikowanemu specjaliście. Na pewno ograniczy to sumaryczne koszty uruchomienia i spowoduje jego szybki przebieg minimalizując potencjalne sytuacje niebezpieczne dla zdrowia i życia ludzi oraz kondycji maszyn.

Instalację i podłączanie serwo-napędów omówimy w innym artykule

*) Niniejszy artykuł dotyczy podłączania i uruchamiania standardowych falowników skalarnych i wektorowych małych i średnich mocy. Obejmuje on przypadki implementacji tych urządzeń w standardowych aplikacjach napędowych i pracujących w typowym dla nich otoczeniu. Zawarte tu porady mają charakter ogólny i nie rozpatrują przypadków szczególnych zatem pamiętaj, że wszystko co robisz, robisz tylko na własną odpowiedzialność. Firma ELEKTRONIKA SERWIS, a w szczególności autor tego artykułu, nie ponoszą jakiejkolwiek odpowiedzialności za ewentualne skutki Twoich działań.

Projekt: „Zadajnik Inwerterów”

Zadajnik Inwerterów

Zadajnik Inwerterów

Jak to często bywa „potrzeba matką wynalazku”, powstał więc najpierw schemat a niedługo później gotowe urządzenie, którego główną funkcją jest zadawanie standardowych sygnałów sterowniczych cyfrowych (zarówno podczas sterowania „masą” jak i „plusem”) oraz analogowego, a także badanie w czasie rzeczywistym obecności napięć zasilania wytwarzanych przez podłączony inwerter i stanów pojawiających się na wyjściach cyfrowych tegoż.

O ile schemat połączeń i same połączenia są stosunkowo proste, o tyle już samo wykonanie nie, a to z uwagi na konieczność zamocowania wielu elementów mechanicznych, jak kontrolki, przełączniki, gniazda, itp. i nadanie temu jakiejś estetycznej i uporządkowanej formy.

Podstawowe Parametry Techniczne

  •   kontrola napięć: 24V i 10V
  •   5 wyjść cyfrowych (sterowanie „plusem” – 24V lub sterowanie „minusem” – GND) z możliwością mostkowania wyjść „D” i „E” w wersji rozbudowanej zadajnika
  •   1 wyjście analogowe napięciowe (0-10V), które może pracować jako wyjście prądowe (4-20mA) w wersji rozbudowanej zadajnika
  •   2 wejścia cyfrowe (maks. 24V), w wersji rozbudowanej pracujące również z napięciem 10V
  •   Rozdzielone masy (analogowa i cyfrowa) z możliwością ich połączenia w wersji rozbudowanej zadajnika
  •   połączenie zadajnika z inwerterem za pomocą oznakowanych, kolorowych przewodów uniwersalnych z wtykami bananowymi

 

Po wielkich bólach i wielu próbach (co widać na fotkach poniżej) urządzenie weszło na stan jako pełnoprawne i nota bene bardzo przydatne narzędzie serwisowe.

REPORTAŻ z WARSZTATU

Zestaw części i narzędzi – Zaczynamy.

Naklejamy szablon i wiercimy otwory.

Porządnie mocujemy w obudowie wszystkie części

Łączymy według schematu wszystkie elementy zadajnika.

Zadajnik jest gotowy – Sprawdzamy działanie wszystkich układów.

Dodajemy odpowiednio przygotowane i opisane kable połączeniowe.

 

 

Zadajnik Inwerterów
– wersja rozbudowana „full wypas”

Podczas korzystania z zadajnika okazało się, że warto by dodać jeszcze parę fajnych funkcjonalności między innymi z tego powodu, że niektóre tanie falowniki produkcji „Myfriend” mają pewne, nazwijmy to „upośledzenia” sterowania. Na przykład falowniki firmy Sanyu nie posiadają możliwości sterowania „plusem”, więc na ich listwie zaciskowej w ogóle nie wyprowadzono napięcia +24V, a  masa sterowania jest wspólna z masą zadawania napięciowego, co ograniczałoby funkcjonowanie naszego zadajnika.

Tak więc w nowej wersji zadajnik uległ następującym modyfikacjom i modernizacjom:

  • zasilanie wyjść przekaźnikowych falownika zyskało przełącznik umożliwiający pracę tej części zadajnika z napięcia +10V,
  • dodatkowy wyłącznik pozwala połączyć masy, analogową i cyfrową we wspólną masę występującą na obydwóch podłączeniach „GND” i „0V”,
  • zadawanie wejść cyfrowych zyskało możliwość mostkowania dodanym wyłącznikiem kanałów „D” i  „E”,
  • ciekawostką jest dodanie modułu zadawania prądowego z osobnym potencjometrem do jego ustawiania i przełącznikiem, który umożliwia pracę wyjścia „IN-A” jako wyjście prądowe, napięciowe lub odłączenie („off”).

 

Jedynym problemem stała się warstwa opisowa, która musiała zostać „wzbogacona” o naklejki opisujące dodatkowe funkcje urządzenia.

 

URZĄDZENIE w AKCJI

Zadajnik podłączony do falownika SEW, gotowego do pracy.

 

Falownik w trakcie naprawy.

 

Zadajnik w wersji rozbudowanej współpracuje także z urządzeniami firmy Sanyu i innymi inwerterami niskobudżetowymi.

 

YUDO TW-600 Sequence Injection Timer

Informujemy naszych Klientów, że dzięki współpracy z koreańskim potentatem w branży tworzyw sztucznych, firma ELEKTRONIKA SERWIS rozszerzyła swoją ofertę serwisową o naprawy timerów sekwencji wtrysku (sequence injection timers) typu TW600 firmy YUDO.

YUDO TW600

 

Serwisujemy również regulatory temperatury firmy YUDO, takie jak np. CW662, CGF560S. Są to wysokiej klasy cyfrowe moduły regulatorów temperatury stosowane w przemyśle tworzyw sztucznych.

Hybrydowe Moduły IGBT

Większość współczesnych falowników posiada elementy mocy skupione w jednej obudowie układu hybrydowego. Taki układ potocznie nazywa się „modułem IGBT” lub „hybrydowym modułem IGBT” i oprócz tranzystorów IGBT, które są tam głównymi elementami mocy, zawiera często drivery nimi sterujące oraz prostownik trójfazowy.

Moduły IGBT wykonane są w technologii grubowarstwowej w taki sposób, że na płytce ceramicznej napylone są warstwy półprzewodnikowe oraz inne warstwy tworzące elementy bierne. Powierzchnie przewodzące łączone są często poprzez zgrzewanie za pomocą cienkiej srebrzanki, która też łączy nogi układu z elementami jego struktury.
Cały moduł jest zalewany zazwyczaj lepkim żelem o właściwościach dielektrycznych, który ma jednocześnie zabezpieczać delikatną strukturę przed uszkodzeniami mechanicznymi i korozją. Zalewę tą zabezpiecza plastikowa pokrywa zgrzana z pozostałą częścią obudowy układu.
Zewnętrzna strona płytki ceramicznej stanowi zazwyczaj aluminiowy radiator układu, który poprzez naniesioną podczas montażu modułu warstwę pasty o dobrej przewodności termicznej i zewnętrzny radiator, ma za zadanie odprowadzenie ciepła ze struktury układu IGBT do otoczenia.

 

układ hybrydowy IGBT

Na zdjęciu powyżej widać klasyczny moduł hybrydowy IGBT wymontowany z falownika trójfazowego małej mocy. Moduł został pozbawiony pokrywy zewnętrznej.
W strukturze modułu, patrząc od lewej strony, możemy wyróżnić niektóre elementy mocy, a więc: prostownik trójfazowy oraz dwa układy mocy z tranzystorami IGBT służącymi do komutacji wyjść falownika oraz sterowania rezystorem hamowania.
W środkowej części modułu widać uszkodzenia powstałe na skutek korozji struktury.

Moduły IGBT są „sercem” falowników, w związku z tym ich wymiana jest znaczącym kosztem podczas napraw.

Firma ELEKTRONIKA SERWIS wykonuje naprawy falowników, w tym diagnozę i wymianę modułów IGBT.

Patrz: Oferta 

Kopie Awaryjne i Archiwalne

*

Ileż to razy w pracy utrzymania ruchu ciągłego na zakładzie przemysłowym spotkaliście się z sytuacją, w której z urządzenia w taki, czy inny sposób „wyparowało” oprogramowanie, zwłaszcza dotyczy to komputerów PC ale też i paneli operatorskich, albo sterowników PLC. Przyczyn takiego stanu rzeczy oczywiście może być wiele. Od tak nieprzewidzianych jak przepięcia sieci czy niespodziewane awarie chłodzenia, uszkodzenia mechaniczne, aż po wynikające z zaniedbań i braku przeglądów oraz prewencji, powodując najczęściej uszkodzenia układów:

  • zasilania, (zasilaczy, przetwornic),
  • chłodzenia (wentylatory, radiatory, brak lub niewłaściwa lub poprostu stara pasta termoprzewodząca),
  •  elektroniki płyt głównych,
  • podtrzymania zasilania pamięci ulotnych SRAM,
  • samych dysków HDD lub innych pamięci stałych

Jest jeszcze taka tajemnicza możliwość, która ma miejsce całkiem często, a polega ona na tym, że oprogramowanie „wyparowuje” całkiem prawie „samoistnie”. Tu przyczyna jest tajemnicza bardzo i zazwyczaj po pewnym czasie okazuje się, że sterownik chyba nie działał i kolega przełączył taką małą wajhę z napisem „reset”, albo na wszelki wypadek wyciągnął ze sterownika baterię celem sprawdzenia czy jest ok (oczywiście bez miernika), albo mając prawa administratora skasował kilka zupełnie jego zdaniem niepotrzebnych plików.

Co robić jeśli już stwierdzimy, że wszystko na niebie i ziemi wskazuje na brak lub uszkodzenie oprogramowania ?

Jeśli mamy pod ręką akurat kopię awaryjną brakujących danych, a do tego narzędzia (software, hardware) do jej przywrócenia i jeżeli na dodatek jest i instrukcja wykonania tej operacji, wszystko jest proste, jasne i przede wszystkim szybkie, co w ruchu ciągłym maszyn ma przeogromne znaczenie.

Oczywiście przed przystąpieniem do przywracania utraconego oprogramowania z kopii awaryjnej należy usunąć przyczyny powstania utraty tych danych, tj. wymienić na nowy uszkodzony nośnik np. dysk HDD, wymienić baterie podtrzymujące układy pamięci ulotnych, dokonać naprawy układu zasilania, czy też innej elektroniki.

Nie mam kopii awaryjnej !?!

Tutaj mała konsternacja i moment do refleksji na przyszłość: Dlaczego nie mam kopii awaryjnej ?. Jeśli maszyna jest objęta umową gwarancyjną, to sprawa może okazać się prosta (choć zwykle operacja przywrócenia będzie długotrwała i nie gwarantuje zazwyczaj odzyskania danych parametrycznych maszyny). Jeśli nie, pozostaje odzyskanie danych z uszkodzonego nośnika. Nie zawsze taka operacja jest technicznie możliwa a jeśli jest, może okazać się bardzo kosztochłonna. Podobnie zawsze możemy podjąć próbę zwrócenia się do producenta lub importera danej maszyny celem zakupu odpowiedniego oprogramowania zwykle wraz z usługą serwisową jego przywrócenia i uruchomienia maszyny. Operacja taka może być czaso- i koszto-chłonna, ponadto zwykle i tak trzeba odtworzyć jeszcze utracone dane, takie jak parametry maszyny, receptury itp.

Jeśli już podjęliśmy jedynie sensowną często decyzję odzyskania danych z uszkodzonego nośnika, proponujemy przed wykonaniem telefonu do odpowiedniej firmy (może to być dla przykładu firma ELEKTRONIKA SERWIS) zadbać o to aby nośnik ten został odpowiednio zabezpieczony. W tym celu należy wyłączyć zasilanie maszyny i zabezpieczyć ją przed dostępem osób niepowołanych. W miarę możliwości technicznych można wymontować nośnik z urządzenia, ale zazwyczaj nie jest to konieczne (dobry serwis wykona te operacje samodzielnie, dbając o jak najlepszą kondycję istniejących tam jeszcze danych).

Jak zapobiec awariom oprogramowania ?

Kilka prostych porad prewencyjnych zdecydowanie zmniejszy szanse na stres i realne straty w trakcie zaistnienia awarii związanej z uszkodzeniem lub brakiem oprogramowania i danych w systemach sterowania maszyn przemysłowych.

  • Regularne dokonywanie przeglądów okresowych maszyn z uwzględnieniem systemów sterowania a w nich układów chłodzenia, podtrzymania zasilania (baterie i akumulatory podtrzymujące układy pamięci statycznej SRAM, akumulatory w UPSach, itp.), stanu połączeń elektrycznych szczególnie modułów zasilania, stanu elementów zabezpieczających (zabezpieczenia nadprądowe oraz przeciwprzepięciowe).
  • Regularne (przynajmniej raz w roku) wykonywanie kopii awaryjnych newralgicznych elementów i urządzeń sterowania maszynami (głównie dotyczy to komputerów PC, a w dalszej kolejności paneli operatorskich HMI i sterowników PLC lub innych sterowników dedykowanych.
  • Regularne przeprowadzanie konserwacji systemów operacyjnych, w tym wykonywanie kopii archiwalnych danych. Operacje te najlepiej wykonywać jako zalecenia przeglądu okresowego i połączyć z tworzeniem kopii awaryjnej.
  • Przeprowadzanie napraw eksploatacyjnych i prewencji jako realizacja zaleceń producenta maszyny lub wynikających z przeprowadzonych przeglądów okresowych.

Po drugie.

Odpowiednie służby zakładu pracy powinny opracować i wdrożyć procedurę zarządzania i przechowywania kopii awaryjnych i archiwalnych danych maszynowych i systemów operacyjnych. Należy szczególnie zwrócić uwagę na bezpieczeństwo związane z dostępem do takich strategicznych danych, oraz zapewnić im dobre miejsce składowania dobierając odpowiednie nośniki danych, które będą je zawierać. W przypadku gdy kopie będą przechowywane na serwerach firmowego systemu informatycznego, szczególnie ważne jest bezpieczeństwo tych danych.

Należy również zauważyć, że danym kopii awaryjnych towarzyszą często również narzędzia zarówno software’owe, jak i hardware’owe niezbędne do ich prawidłowego i szybkiego przywrócenia. Narzędzia te wraz z opracowanymi instrukcjami ich użycia należy również odpowiednio zabezpieczyć i przechować, tak aby mieć do nich dostęp w razie konieczności awaryjnego przywracania danych.

Po trzecie.

Powinieneś wiedzieć, że istnieje na rynku być może wiele firm zajmujących się problemem wykonywania i przetwarzania kopii awaryjnych systemów sterowania, jednak nasza firma wie w jaki sposób zorganizować wszystko tak, abyś jako kierownik Utrzymania Ruchu spał w nocy całkiem spokojnie.

Obiegowe przysłowie mówi, że „w zasadzie nie ważnym jest kto i jak wykona kopię, o wiele ważniejsze jest czy w krytycznym momencie kopia taka będzie mogła być sprawnie i z powodzeniem przywrócona, a maszyna wstanie do normalnego działania”.

Polecamy swoje profesjonalne i kompleksowe usługi w zakresie kopii awaryjnych przemysłowych systemów sterowania maszyn, a także ich przetwarzania i przechowywania.

Bądź spokojny – zleć nam opracowanie i wdrożenie systemu kopii awaryjnych w Twoim zakładzie.

 


*) Opisane w tym poście sytuacje dotyczą tej części parku maszynowego, która nie posiada zaimplementowanych fabrycznie mechanizmów redundancji oprogramowania, albo też nie jest wyposażona w systemy zdalnej archiwizacji danych. Są to głównie maszyny starszego typu, choć nie w każdym przypadku.

Gorąca Oferta

UWAGA!

Wykonujemy naprawy podświetlania matryc ekranów i wyświetlaczy LCD wszystkich typów a w tym:

    • naprawy inwerterów podświetlania CCFL, EL i LED,
    • wymiany świetlówek CCFL,
    • wymiany kompletnych matryc i wyświetlaczy LCD
    • modernizacje podświetlania matryc oraz wyświetlaczy LCD z CCFL na LED

Oferta

przegląOferta Gorąca Oferta! Kliknij żeby zobaczyć !

Nasza oferta skierowana jest do:

  • Dyrektorów zakładu (Plant Directors), dyrektorów technicznych (Technical Directors)
  • Kierowników i Managerów działów utrzymania ruchu (Maintenance Departments)
  • osób odpowiedzialnych za dostawę usług i materiałów (Logistics Departments)
  • technicznej kadry zarządzającej odpowiedzialnych za ruch ciągły zakładu.

Oferta Utrzymanie Ruchu

Firma ELEKTRONIKA SERWIS oferuje Państwu usługi:

Awaryjne i bieżące naprawy oraz remonty generalne urządzeń elektroniki przemysłowej.

Serwisujemy urządzenia posiadające zarówno moduły elektroniczne wykonane w oparciu o technikę procesorową LSI / VLSI – SMD / SMT, jak i wykonane w starszych technologiach CMOS / TTL – DIL, są to:

  • Falowniki, Inwertery, Serwonapędy, Servodrivy
  • Zasilacze przemysłowe, Przetwornice i Generatory
  • Panele operatorskie HMI, w tym ekrany dotykowe LCD i przemysłowe monitory CRT
  • Sterowniki PLC, Przekaźniki programowalne
  • Sterowniki specjalizowane, Przekaźniki elektroniczne
  • Specjalizowane moduły elektroniki sterowania i akwizycji danych
  • Regulatory (temperatury, ciśnienia, poziomu cieczy, itp.)
  • Inwertery i Sterowniki HVAC (używane w systemach klimatyzacji, wentylacji i pompach ciepła)
  • Zawory proporcjonalne (w tym hydrauliczne zawory proporcjonalne BOSCH – REXROTH, PARKER)
  • Urządzenia pomiarowe (m.in. firmy FLUKE oraz mierniki i przetworniki wielkości nieelektrycznych)
  • Urządzenia używane w przemyśle tworzyw sztucznych jak sterowniki zaciągów, termostatów, mieszalników, dozowniki barwników, itp.)
  • Zdalne sterowania / piloty przemysłowe (m.in. firm takich jak COMAU, ABB, YUDO i innych)
  • oraz wiele, wiele innych…

UWAGA!
Wykonujemy naprawy podświetlania matryc ekranów i wyświetlaczy LCD wszystkich typów a w tym:

  • naprawy inwerterów podświetlania CCFL, EL i LED,
  • wymiany świetlówek CCFL,
  • wymiany kompletnych matryc i wyświetlaczy LCD
  • modernizacje podświetlania matryc oraz wyświetlaczy LCD z CCFL na LED

Pomiary i kalibracje czujników, regulatorów i przetworników

kalibracje i pomiary

Wykonujemy pomiary oraz kalibracje czujników, regulatorów oraz przetworników pomiarowych zarówno wielkości elektrycznych, jak i temperatury, a także ciśnienia i wilgotności powietrza.

  • Posiadamy kalibratory typu METRAWATT / METRAHIT do wykonywania pomiarów i kalibracji sygnałów elektrycznych

Przeglądy, naprawy eksploatacyjne oraz prewencja

Przeglądy, naprawy, serwis

Wykonujemy:

  • Przeglądy i odkurzanie szaf sterowniczych, paneli operatorskich HMI i komputerów PC
  • Naprawy i modernizacje układów chłodzenia, w tym naprawy chłodzenia procesorów i płyt głównych PC, a także udrażnianie kanałów i wlotów wentylacji szaf i urządzeń, wymiana filtrów, wentylatorów, itd.
  • Wykonywanie kopii awaryjnych i archiwalnych z urządzeń stanowiących elementy sterowania maszyn, tj. :
    – z komputerów PC (kopiowana jest cała pamięć stała – archiwa o szybkiej możliwości awaryjnego odtwarzania danych),
    – ze sterowników PLC i innych sterowników dedykowanych (także poprzez archiwizacje danych zawartych w fizycznych układach scalonych pamięci półprzewodnikowych),
    – z paneli operatorskich HMI

Import elementów elektronicznych i części zamiennych

import częsci

W zależności od potrzeb jesteśmy w stanie zakupić dla naszych Klientów dowolny element elektroniczny lub cześć zamienną związaną z naprawami, które wykonujemy. Włączając w to asortyment trudnodostępny i taki, którego produkcja została już zakończona, a także linie asortymentowe niskonakładowe i dedykowane.
Dokonujemy importu z magazynów na całym świecie, w tym z takich krajów jak: USA, Chiny (głównie Shenzhen), Hong Kong, Korea, Taiwan, Malezja, Singapur oraz Kanada, Meksyk i wszystkie kraje UE (w tym głównie Niemcy, Włochy, Wielka Brytania, Estonia, Francja, Hiszpania, Portugalia, Czechy, itp.).
Zawsze staramy się też zminimalizować czas dostawy przy jednoczesnej optymalizacji kosztów.

Naprawy, Regeneracje, Modernizacje oraz Wymiany urządzeń automatyki i sterowania

(m.in. naprawa i regeneracja paneli operatorskich PIXSYS, SIEMENS, ESA, KEBA, PROFACE, RED LION VX500 i podobnych)

naprawy, wymiany i regeneracje

Usługi programowania pamięci i mikrokontrolerów

programowanie pamięci

Posiadamy programatory elektroniczne różnych rodzajów układów scalonych, w tym pamięci półprzewodnikowych (większość typów) oraz mikrokontrolerów wyposażonych w pamięci typu FLASH, OTP, UV Erasing …

Świadczymy usługi sczytywania, programowania i klonowania danych zawartych w elementach półprzewodnikowych, jak wyżej.  (zainteresowanych prosimy o Kontakt)

Przy wykonywaniu tego typu usług korzystamy z własnych programatorów:

  • TopMax II amerykańskiej firmy EE-Tools,
  • UPROG polskiej firmy RK-System,
  • a także kilkunastu innych dedykowanych do obsługi rzadkich procesorów i unikalnych kości pamięci.

Realizujemy również następujące zadania:

Wykonujemy prototypy funkcjonalne i urządzenia elektroniczne związane z automatyzacją procesów przemysłowych (zobacz nasze projekty)

prototypowanie, programowanie sterowników

Zajmujemy się programowaniem sterowników PLC i konfiguracją systemów sterowania procesami produkcyjnymi

Projektujemy i wdrażamy gotowe rozwiązania automatyzacji procesów technologicznych

Wykonujemy dla celów reklamowych wizualizacje procesów przemysłowych na stronach www

procesy produkcyjne

Specjalizujemy się m.in. w naprawach:

  • NAiS (KT-4), PANASONIC, GEFRAN, SIKA, MORETTO (m.in. TLK38), SBC, HONEYWELL, ERO ELECTRONIC – regulatory temperatury
  • MUEHSAM / ELWIK (RT-M), FEPA (FPX-05 SWAP), LUMEL (RE-72 i inne), ARBURG, BERNARDI, YUDO (CW662, CGF560S), CO.MAT. SpA, DME  – regulatory temperatury, w tym do „centralin” oraz „gorących stołów” dla przemysłu tworzyw sztucznych
  • PIOVAN, MORETTO – elektronika termostatów i osuszaczy tworzyw sztucznych
  • MORETTO DVM – sterowniki dozowników barwnika
  • PIOVAN (Easy, Easy2, Easy3), MORETTO, PIXSYS – sterowniki zaciągów
  • YUDO (TW600) – timery sekwencji wtrysku (sequence injection timers)
  • SANYU, SEW, LENZE, MOOG, LG (Ls), BERGES, ELAP – falowniki, inwertery i servodriver’y, sterowniki napędów
  • CEMAS – generatory zgrzewarek wibracyjnych
  • MITSUBISHI (Melsec), SIEMENS (Simatic S7, C7, LOGO! i inne), FATEK, Allen Bradley, EATON, TELEMECANIQUE, PHOENIX CONTACT, ALLEN BRADLEY, MICROSET, SCE Elettronica, HAHN, DIAS, LEGO, FESTO, BECKHOFF, SIPRO, PILZ – sterowniki oraz przekaźniki programowalne, sterowniki PLC i ich moduły I/O.
  • ADVANTECH, KEBA – ENGEL, GEFRAN – REMU, SAIA, PONAR, ITALTECH, SANDRETTO, STEINEL, MITROL, DICO, TELDA ELECTRONICS, TRUMPH – moduły elektroniki sterowania maszyn i akwizycji danych
  • BOSCHREXROTH – elektronika hydraulicznych zaworów proporcjonalnych
  • SIEMENS, ITALTECH, KRAUSS MAFFEI, MOELLER, RED LION, UniOP – panele operatorskie HMI, moduły akwizycji danych
  • KONTRON, GIGABYTE, ASUS, IBM, ECS, MSI, ASROCK – płyty główne w systemach sterowania opartych o mikrokomputery PC
  • COMAU (C3G, C4G), ITALTECH / IROBI, ABB, YUDO-STAR, Dynax Corporation, PIOVAN, MORETTO, GORKE ELECTRONIC – zdalne sterowania, przemysłowe piloty przewodowe i bezprzewodowe
  • KOLVER, AGROFILE (GRANDE), DOGA,BOSCH Orgapack – sterowniki i zasilacze wkrętarek przemysłowych
  • MEAN WELL, SIEMENS (SITOP), COMAU, ABB, MURRELEKTRONIK, IMPOL, DANICA, EMERSON, LEGRAND, IMCON-ITEC, TEMA, ALLEN BRADLEY, TELEMECANIQUE, PHOENIX CONTACT, AUTOMATA, WEIDEMÜLLER, GW INSTEK, CABUR, AIM TTi, NDN, YUDO – przemysłowe zasilacze impulsowe, przetwornice zasilania, zasilacze laboratoryjne
  • FLUKE – urządzenia pomiarowe
  • GRUNDFOS – sterowniki specjalizowane (hydrofory, instalacje uzdatniania wody)
  • SIT, JUNGHEINRICH – sterowniki palników gazowych, kontrolery płomienia
  • SICK, PILZ – bariery bezpieczeństwa, przekaźniki i sterowniki bezpieczeństwa
  • SYSTEMAIR (CORRIGO), SIEMENS (RWX), SINCLAIR, ELECTRA i inne – sterowniki i inwertery HVAC (klimatyzacja, wentylacja, ogrzewanie)
  • BROTTERODE,  DYMACO, PROMATIC, MACANAYA, INFIND, Constantin Innovation – systemy sterowania liniami produkcyjnymi, regloskopy, stanowiska montażowe (kontroli świecenia lamp, kontroli szczelności, itp.)
  • COMAU, ABB, ERC, Tecno Matic Robots, YUDO – sterowniki robotów przemysłowych
  • ALBANY, DYNACO, SUNX – sterowniki bram kurtynowych
  • ORGAPACK, POLPACK – elektronika wiązarek i maszyn pakujących
  • HYDAC, MAYSER, KEBA, MECAIR, PIOVAN, DASSET, MORETTO, MAGUIRE, BARBER-COLMAN, NUOVA ELETTRA – inna elektronika przemysłowa

… i wiele innych

regulatory temperatury

Zapraszamy do skorzystania z naszej Oferty !