Projekt – Interfejs UII

UII PCB v3 2

Uniwersalny Interfejs Inwerterów

Universal Inverters Interface

Projekt „Uniwersalny Interfejs Inwerterów”

Wszystkie gotowe wersje Interfejsu UII

Opis projektu

Projekt „Uniwersalny Interfejs Inwerterów” powstał w celu dostosowania parametrów wejść falowników do wymagań sterowania. Może on być także zastosowany jako przekaźnik z izolacją galwaniczną w dowolnych urządzeniach.

Większość tanich, prostych falowników posiada możliwość sterowania „masą” lub „zasilaniem” (tzn. aby wymusić stan aktywny na wejściu takiego urządzenia, należy zewrzeć wejście do masy, bądź zasilania udostępnionego na osobnych zaciskach inwertera).

Gdyby jednak falownik z taką ograniczoną możliwością sterowania musiał być zasterowany potencjałowo np. z wyjść sterownika, gdzie pojawia się w stanie aktywnym potencjał zasilania sterownika (lub wyjście sterownika zwierane jest na jego masę), nieodzownym staje się zastosowanie interfejsu, który pośredniczyłby pomiędzy potencjałem sterownika a napięciem falownika i odpowiednio je separował, jednocześnie przenosząc impulsy sterowania.

Zastosowanie

W opisanym wyżej przypadku doskonale sprawdza się nasz UII, który występuje w wielu wersjach, tak aby była możliwość dopasowania go do właściwego poziomu napięć sterujących. I tak na przykład wykonania UII oznaczone jako „W1” umożliwiają sterowanie wprost napięciem sieci jednofazowej 230VAC a pozostałe oferują możliwości sterowania napięciami zarówno stałymi, jak i przemiennymi w szerokich zakresach.

Wersje i Wykonania

Wszystkie wersje płytek można łączyć w bloki, tak aby uzyskać dowolną ilość niezależnych kanałów sterowania, które w razie potrzeby mogą być połączone np. masami.
Dodatkowo wersje V2.1 i V3.0 są dwukanałowe, tzn. każda płytka posiada dwa niezależne kanały sterowania, które mogą być ze sobą połączone np. masami.
Wersja V4.0 jest jednokanałowa.

Zaprojektowany i produkowany przez nas „Uniwersalny Interfejs Inwerterów” jest dostępny w trzech zasadniczych wersjach i wielu wykonaniach (patrz Tabela 1).

Opis wersji UII V2.1 i V3.0

UII gotowe wersje v2.1 & v3.0
Gotowe do zastosowania wersje UII v2.1 & v3.0

W uproszczeniu wersje UII V2.1 i V3.0, to interfejsy wykonane w oparciu o elementy optyczne, dzięki czemu uzyskuje się relatywnie duże szybkości przełączania i bardzo dobrą izolację obwodu sterującego od obwodu wykonawczego, czyli wejść inwertera. Wersja V3.0 jest zminiaturyzowaną, niskonapięciową odmianą wersji V2.1.

Wersje V2.1 i V3.0 są dwukanałowe. Każda płytka posiada dwa niezależne kanały sterowania, które mogą być ze sobą połączone np. masami.

Opis wersji UII V4.0

UII gotowa wersja v4.0 w wykonaniach W1 i W2
Gotowa do zastosowania wersja v4.0 w wykonaniach W1 i W2

Wersja V4.0 we wszystkich jej wykonaniach napięciowych oparta jest o elektromechaniczny element przełączający (przekaźnik), który pozwala m.in. na uzyskanie negacji sterowania (wymuszenie potencjału na wejściu falownika, przy braku sygnału sterującego na jego wejściu), niestety odbywa się to kosztem prędkości przełączania i ograniczoną w stosunku do wersji optycznej, ilością przełączeń.

UII w wersji V4.0 są jednokanałowe. Każda płytka posiada jeden kanał sterowania.

Wykonania

Wykonania są oznaczone jako W1 do W6 określają rodzaj i zakres napięć sterujących (wejściowych) interfejsów.

Wykonanie „W1” dopuszcza sterowanie w zakresie napięć sieci jednofazowej 230VAC (wykonanie to występuje zarówno w wersji V2.1, jak i V4). Interfejsy oznaczone jako „W2” i „W3” dedykowane są do sterowania napięciami 24V, odpowiednio: napięciem przemiennym i stałym. Sterowania w wersjach „W4” i „W5” obejmują zakres napięć 12VAC i 12VDC, zaś wersje oznaczone jako „W6” są wersjami specjalnymi, wykonywanymi na zapotrzebowanie Klienta i mogą obejmować bardzo szeroki zakres napięć i różne rodzaje sterowania.

Przykłady zastosowania

Każda płytka interfejsu UII posiada możliwość złączenia kaskadowego w celu zwiększenia ilości kanałów sterowania. Tak złączone płytki zachowują możliwość połączeń wspólnych (np. wspólnej masy).
Złączenie kaskadowe może być realizowane poprzez połączenie cyną odsłoniętych, pobielonych pól lutowniczych (jak to widać na rysunku poniżej).

Dane Techniczne

UII PCB v4 2

W celu zakupu wybranego interfejsu lub otrzymania szczegółowych informacji dotyczących zastosowania UII w konkretnym rozwiązaniu układowym, prosimy o Kontakt lub FB: ELSERW.PL albo z dystrybutorem AUTOMEL.PL

Interfejsy UII są dostępne również na aukcjach Allegro:

 Interfejs falowników 230VAC, 2 kanały, V2.1 W1 10961675172 – Allegro.pl

 Interfejs falowników 12V/24V, 2 kanały, V3.0 W3 10963881475 – Allegro.pl

 Interfejs falowników 230VAC, V4.0 W1 10964567094 – Allegro.pl

 Interfejs falowników 24VDC, V4.0 W3 10964710651 – Allegro.pl

Uruchamianie napędu z falownikiem

… czyli praktyczna wiedza na temat podłączania falownika.*

Co należy zrobić i o czym pamiętać zanim podłączysz falownik ?

Przed podłączeniem falownika należy:

  • Sprawdzić czy dane techniczne falownika są zgodne z danymi na tabliczce znamionowej silnika oraz czy zasilanie falownika jest odpowiednie do tego, które zostanie do niego przyłączone w maszynie. Napięcie zasilania zawsze sprawdzamy zanim przyłączymy falownik do układu.
  • Na pewno warto sprawdzić sposób i rodzaj sterowania, ze szczególnym uwzględnieniem zadawania częstotliwości (prędkości). Pomocne tu będą: dokumentacja maszyny (schematy elektryczne) i dokumentacja dostarczona przez producenta / importera montowanego falownika.
  • Sprawdzić czy falownik jest odpowiednio zaprogramowany a jeśli nie, należy zrobić to zgodnie z jego instrukcją programowania.
Obrazek posiada pusty atrybut alt; plik o nazwie Depositphotos_13332104_original.jpg
  • Koniecznie sprawdź, czy silnik jest właściwie skonfigurowany (falowniki o zasilaniu jednofazowym – silniki zwykle konfigurowane są „w trójkąt” a o zasilaniu 3-fazowym „w gwiazdę”).

  • Sprawdzić symetryczność uzwojeń silnika (zwłaszcza jeśli nie podłączamy fabrycznie nowego silnika) – za pomocą omomierza, wykonując na najniższym zakresie pomiarowym 3 pomiary rezystancji uzwojeń silnika od strony zacisków falownika (falownik odłączony oczywiście od układu elektrycznego). Mierzymy rezystancję pomiędzy zaciskami U-V, U-W, V-W, wyniki pomiarów muszą być identyczne, w przeciwnym wypadku sprawdzamy silnik oraz okablowanie.
  • Przy pomocy miernika izolacji (induktora) należy sprawdzić czy nie ma doziemienia na żadnej z 3 faz od strony zacisków falownika (podczas pomiarów falownik musi być koniecznie odłączony od układu !).
  • Sprawdzić „ręcznie” (z zachowaniem szczególnej ostrożności !), czy wirnik silnika swobodnie się obraca. Jeśli nie, lub jeśli sprawdzenie takie nie jest możliwe, silnik należy odłączyć mechanicznie od maszyny (np. zdjąć pasek klinowy) i lub wybudować go na zewnątrz.
  • W razie jakichkolwiek wątpliwości dotyczących silnika, należy oddać go do sprawdzenia i ew. naprawy w specjalistycznej firmie. Próba współpracy falownika z wadliwym silnikiem w większości przypadków kończy się poważnymi konsekwencjami (najczęściej ucierpi na tym falownik).
  • Przed przyłączeniem falownika można wykonać rzeczywisty test silnika podłączając go bezpośrednio do sieci zasilającej 3-fazowej. Dotyczy to większości silników 3-fazowych, lecz nie wszystkich.
    (Uwaga: w takim przypadku silnik musi być skonfigurowany zgodnie z jego tabliczką znamionową, zwykle „w gwiazdę”, a jego wirnik musi mieć możliwość swobodnego obrotu – najlepiej odłączyć w tym celu układ mechaniczny).

Przed podaniem napięcia zasilania na falownik (po jego podłączeniu i montażu w maszynie) należy:

  • Sprawdzić poprawność mechanicznego montażu falownika w maszynie lub rozdzielnicy / szafie sterowniczej. Zwrócić uwagę na minimalne odstępy obudowy falownika od innych urządzeń w szafie (odstępy te oraz inne warunki montażu mechanicznego falownika są opisane w dokumentacji producenta urządzenia i powinny być rygorystycznie przestrzegane, gdyż nie stosowanie się do nich skraca bezawaryjny czas pracy lub w ogóle uniemożliwia falownikowi poprawną pracę).
Obrazek posiada pusty atrybut alt; plik o nazwie Depositphotos_9382384_original.jpg
  • Sprawdzić poprawność elektrycznego podłączenia falownika, ze szczególnym uwzględnieniem przekrojów i poprawności podłączenia uziemień zarówno od strony zasilania falownika, jak i od strony jego obciążenia (silnika).

  • Sprawdzić poprawność logiczną i elektryczną podłączenia sygnałów sterujących do zacisków sterowania falownika.
  • Sprawdzić czy wszystkie parametry zaprogramowanego falownika są poprawne i zgodne z warunkami jego pracy (parametry dot. silnika, sterowania, sposobu normalnej pracy oraz trybów awaryjnych, itd.). Odpowiednie informacje znajdują się zawsze w dokumentacji fabrycznej falownika.
  • UWAGA: W układzie elektrycznym, pomiędzy zaciskami wyjściowymi falownika a silnikiem nie może być żadnej aparatury rozłączającej, jak styczniki, wyłączniki nadprądowe, itp. (chyba, że producent falownika je dopuszcza, ale sytuacja taka ma miejsce niezwykle rzadko i jest szczegółowo opisana w dokumentacji falownika).

Podczas pracy falownika, tj. gdy falownik jest w trybie „RUN” („Trip”) :

  • ZABRANIA SIĘ kategorycznie odłączania obciążenia falownika (silnika), ani też przyłączania go (nawet jeśli falownik pracuje testowo i bez obciążenia).

  • Należy zadbać o bezprzerwowe zasilanie falownika do momentu zatrzymania silnika i przejścia falownika w stan „STOP”. Trzeba pamiętać, że sterowanie zasilaniem falownika musi być odpowiednio skorelowane ze sterowaniem ruchem silnika, tak aby stycznik zasilania (jeśli jest) nie powodował rozłączania zasilania przed zgłoszeniem zatrzymania się falownika (informację o zatrzymaniu można np. pobrać z jednego z wyjść cyfrowych falownika pod warunkiem jednakże, że falownik ten posiada taką możliwość i jest odpowiednio zaprogramowany).
  • NIE NALEŻY wyłączać zasilania maszyny, a tym samym falownika, kiedy falownik nie jest w trybie „STOP” a silnik nie jest całkowicie zatrzymany. Skraca to wydatnie żywotność falownika, a w pewnych sytuacjach może dojść do niebezpiecznych stanów awaryjnych napędu, z uszkodzeniem urządzeń włącznie.
Obrazek posiada pusty atrybut alt; plik o nazwie Depositphotos_13332104_original.jpg
  • Należy pamiętać, że po wyłączeniu napięcia zasilania falownika, ponowne jego włączenie jest możliwe po co najmniej 60 sekundach (o ile dokumentacja tego urządzenia nie nakazuje inaczej). Należy rygorystycznie przestrzegać minimum 60 sekundowego cyklu włączania i wyłączania zasilania falownika.

  • Dozwolona jest dowolna zmiana częstotliwości (prędkości) falownika, jednakże należy pamiętać, że zbyt szybka zmiana nastaw (głównie w przypadku zadawania częstotliwości „ręcznie”, np. za pomocą potencjometru) może doprowadzić do przeciążenia układu napędowego i wystąpienia błędu lub uszkodzenia falownika.
  • Przy pierwszym uruchomieniu napędu należy zadbać, aby ustawiona częstotliwość wyjściowa falownika była taka sama, jak nominalna częstotliwość pracy silnika (zwykle jest to 50Hz). W szczególnych jednak przypadkach dopuszcza się odstąpienie od tej zasady, jednak zawsze należy mieć na uwadze wystąpienie przeciążenia falownika podczas rozbiegu i związane z tym możliwe konsekwencje dla napędu i samego falownika.
  • Podczas uruchamiania napędu należy zwrócić uwagę na to, czy silnik rozpędza się i pracuje równomiernie, bez zacięć i ze stabilną prędkością (równomiernym przyśpieszaniem). W razie jakichkolwiek anomalii należy przerwać uruchomienie i wznowić je następnie po odłączeniu wirnika silnika od układu mechanicznego, jeśli ten jest prawdopodobną przyczyną zauważonych nieprawidłowości.
Obrazek posiada pusty atrybut alt; plik o nazwie Depositphotos_13332104_original.jpg
  • W przypadku wystąpienia błędu sygnalizowanego stanem alarmowym falownika i zatrzymaniem napędu, przed skasowaniem błędu i ponownym rozruchem napędu, należy odczekać określony czas wskazany w dokumentacji fabrycznej falownika (zwykle jest to nie mniej niż 60 sekund).

  • Należy pamiętać, że desymetryzacja faz lub skokowa zmiana rezystancji obciążenia elektrycznego falownika (np. odłączenie silnika), w większości przypadków skutkuje USZKODZENIEM falownika.
Obrazek posiada pusty atrybut alt; plik o nazwie Depositphotos_9382384_original.jpg
  • Uruchomienie napędu należy przeprowadzać zawsze przy spełnieniu warunków bezpieczeństwa wynikających ze stosowania odpowiednich instrukcji w tym zakresie. Szczegółowe warunki uruchamiania napędów z falownikami są opisane w dokumentacjach falowników i maszyn przemysłowych, w których pracują.

Jeśli po przeczytaniu powyższego artykułu nie rozumiesz zawartych tutaj informacji lub z różnych przyczyn, nie jesteś w stanie zastosować się do powyższych porad, instalację falownika zleć wykwalifikowanemu specjaliście. Na pewno ograniczy to sumaryczne koszty uruchomienia i spowoduje jego szybki przebieg minimalizując potencjalne sytuacje niebezpieczne dla zdrowia i życia ludzi oraz kondycji maszyn.

Instalację i podłączanie serwo-napędów omówimy w innym artykule

*) Niniejszy artykuł dotyczy podłączania i uruchamiania standardowych falowników skalarnych i wektorowych małych i średnich mocy. Obejmuje on przypadki implementacji tych urządzeń w standardowych aplikacjach napędowych i pracujących w typowym dla nich otoczeniu. Zawarte tu porady mają charakter ogólny i nie rozpatrują przypadków szczególnych zatem pamiętaj, że wszystko co robisz, robisz tylko na własną odpowiedzialność. Firma ELEKTRONIKA SERWIS, a w szczególności autor tego artykułu, nie ponoszą jakiejkolwiek odpowiedzialności za ewentualne skutki Twoich działań.